Artificial intelligence tools in supporting healthcare professionals for tailored patient care

0
Artificial intelligence tools in supporting healthcare professionals for tailored patient care
  • Lancet, T. Diabetes: a defining disease of the 21st century. Lancet 401, 2087 (2023).

    Article 

    Google Scholar 

  • Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E. & Gregg, E. W. Global trends in diabetes complications: a review of current evidence. Diabetologia 62, 3–16 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Rustad, J. K., Musselman, D. L. & Nemeroff, C. B. The relationship of depression and diabetes: pathophysiological and treatment implications. Psychoneuroendocrinology 36, 1276–1286 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Khaledi, M., Haghighatdoost, F., Feizi, A. & Aminorroaya, A. The prevalence of comorbid depression in patients with type 2 diabetes: an updated systematic review and meta-analysis on huge number of observational studies. Acta Diabetol. 56, 631–650 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Dal Canto, E. et al. Diabetes as a cardiovascular risk factor: an overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 26, 25–32 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hills, A. P. et al. Epidemiology and determinants of type 2 diabetes in South Asia. Lancet Diab. Endocrinol. 6, 966–978 (2018).

    Article 

    Google Scholar 

  • Powers, M. A. et al. Diabetes self-management education and support in adults with type 2 diabetes: a consensus report of the american diabetes association, the association of diabetes care & education specialists, the academy of nutrition and dietetics, the American Academy of Family Physicians, the American Academy of PAs, the American Association of Nurse Practitioners, and the American Pharmacists Association. Diabetes Care 43, 1636–1649 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kupfer, J. M. & Bond, E. U. Patient satisfaction and patient-centered care: necessary but not equal. JAMA 308, 139–140 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bierman, A. S. & Tinetti, M. E. Precision medicine to precision care: managing multimorbidity. Lancet 388, 2721–2723 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Williams, J. S., Walker, R. J., Smalls, B. L., Hill, R. & Egede, L. E. Patient-centered care, glycemic control, diabetes self-care, and quality of life in adults with type 2 diabetes. Diabetes Technol. Ther. 18, 644–649 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2018. a consensus report by the American Diabetes Association and the European Association for the study of diabetes. Diabetes Care 41, 2669–2701 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rutten, G. E. H. M., Van Vugt, H. & de Koning, E. Person-centered diabetes care and patient activation in people with type 2 diabetes. BMJ Open Diabetes Res. Care 8, e001926 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asmat, K., Dhamani, K., Gul, R. & Froelicher, E. S. The effectiveness of patient-centered care vs. usual care in type 2 diabetes self-management: a systematic review and meta-analysis. Front. Public Health 10, 994766 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wade-Vuturo, A. E., Mayberry, L. S. & Osborn, C. Y. Secure messaging and diabetes management: experiences and perspectives of patient portal users. J. Am. Med. Inform. Assoc. 20, 519–525 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Holmgren, A. J. et al. Assessing the impact of the COVID-19 pandemic on clinician ambulatory electronic health record use. J. Am. Med. Inform. Assoc. 29, 453–460 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Sun, R., Blayney, D. W. & Hernandez-Boussard, T. Health management via telemedicine: learning from the COVID-19 experience. J. Am. Med. Inform. Assoc. JAMIA 28, 2536–2540 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kumar, A. et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab. Syndr. 14, 535–545 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brands, M. R. et al. Patient-centered digital health records and their effects on health outcomes: systematic review. J. Med. Internet Res. 24, e43086 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarraju, A. et al. Identifying reasons for statin nonuse in patients with diabetes using deep learning of electronic health records. J. Am. Heart Assoc. 12, e028120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, S., Panattoni, L., Chi, J. & Palaniappan, L. Can secure patient-provider messaging improve diabetes care? Diabetes Care 40, 1342–1348 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Somani, S., van Buchem, M. M., Sarraju, A., Hernandez-Boussard, T. & Rodriguez, F. Artificial intelligence–enabled analysis of statin-related topics and sentiments on social media. JAMA Netw. Open 6, e239747 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uncovska, M., Freitag, B., Meister, S. & Fehring, L. Rating analysis and BERTopic modeling of consumer versus regulated mHealth app reviews in Germany. NPJ Digit. Med. 6, 115 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beam, K. et al. Performance of a large language model on practice questions for the neonatal board examination. JAMA Pediatr. 177, 977–979 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strong, E. et al. Chatbot vs medical student performance on free-response clinical reasoning examinations. JAMA Intern. Med. 183, 1028–1030 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J., Cai, Z. R., Chen, M. L., Simard, J. F. & Linos, E. Assessing biases in medical decisions via clinician and AI chatbot responses to patient vignettes. JAMA Netw. Open 6, e2338050 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martens, T. et al. Effect of continuous glucose monitoring on glycemic control in patients with type 2 diabetes treated with basal insulin: a randomized clinical trial. JAMA 325, 2262–2272 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y.-B. et al. An integrated digital health care platform for diabetes management with ai-based dietary management: 48-week results from a randomized controlled trial. Diabetes Care 46, 959–966 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Ganguli, I., Orav, E. J., Lupo, C., Metlay, J. P. & Sequist, T. D. Patient and visit characteristics associated with use of direct scheduling in primary care practices. JAMA Netw. Open 3, e209637 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO issues warning on falsified medicines used for diabetes treatment and weight loss. (WHO, 2024).

  • Manshahia, P. K. et al. Systematic review to gauge the effect of levothyroxine substitution on progression of diabetic nephropathy in patients with hypothyroidism and type 2 diabetes mellitus. Cureus 15, e44729 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sellmeyer, D. E. et al. Skeletal metabolism, fracture risk, and fracture outcomes in type 1 and type 2 diabetes. Diabetes 65, 1757–1766 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrari, S. L. et al. Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos. Int. 29, 2585–2596 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, B. et al. A narrative review of diabetic bone disease: characteristics, pathogenesis, and treatment. Front. Endocrinol. 13, 1052592 (2022).

    Article 

    Google Scholar 

  • Patel, V., Fancourt, D., Furukawa, T. A. & Kola, L. Reimagining the journey to recovery: the COVID-19 pandemic and global mental health. PLOS Med 20, e1004224 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J. et al. Prevalence and associations of poor mental health in the third year of COVID-19: U.S. population-based analysis from 2020 to 2022. Psychiatry Res. 330, 115622 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Swaminathan, A. et al. Natural language processing system for rapid detection and intervention of mental health crisis chat messages. npj Digit. Med. 6, 1–9 (2023).

    Article 

    Google Scholar 

  • Kim, J. et al. Telehealth utilization and associations in the united states during the third year of the covid-19 pandemic: population-based survey study in 2022. JMIR Public Health Surveill. 10, e51279 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • sentence-transformers/all-MiniLM-L6-v2 · Hugging Face. (2024).

  • Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    Article 

    Google Scholar 

  • Davies, D. L. & Bouldin, D. W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1, 224–227 (1979).

  • Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (eds. Burstein, J., Doran, C. & Solorio, T.) 4171–4186 (Association for Computational Linguistics, Minneapolis, Minnesota, 2019). https://doi.org/10.18653/v1/N19-1423.

  • thenlper/gte-small · Hugging Face. https://huggingface.co/thenlper/gte-small.

  • Leypold, T., Schäfer, B., Boos, A. & Beier, J. P. Can AI think like a plastic surgeon? Evaluating GPT-4’s clinical judgment in reconstructive procedures of the upper extremity. Plast. Reconstr. Surg. Glob. Open 11, e5471 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kojima, T. et al. Large language models are zero-shot reasoners. Adv. Neural Inf. Process. Syst. 35, 22199–22213 (2022).

    Google Scholar 

  • Artificial intelligence risk management framework (AI RMF 1.0) (NIST, 2023).

  • Chang, N., Lee-Goldman, R. & Tseng, M. Linguistic wisdom from the crowd. Proc. AAAI Conf. Hum. Comput. Crowdsour. 3, 1–8 (2015).

    CAS 

    Google Scholar 

  • Subjectivity, ambiguity and disagreement in crowdsourcing. (SAD, 2018).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *